
KSME International Journal, Vol. 13, No. 11, pp. 791- 797, 1999

Relation Between Correction Masses and Bearing
Forces in a Rigid Rotor
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Bearing forces on a rigid rotor are mainly characterized by unbalance distribution. The forces

can be divided into two arbitrary planes along a rotor shaft since any unbalance in the rigid

rotor is able to be expressed on two planes. The correction mass quantities on two arbitrary

planes are analytically found in terms of the bearing force measurements from the basic concept

of three-dimensional rigid body dynamics. The quantities are expressed in terms of the geometry

of rotor - the distance between t\VO bearings and the positions of two planes from the bearings

- and the bearing forces: amplitudes of the alternating component of forces and angular

positions of their peak values. The validity of the proposed method is proved using a simulation
example.
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1. Introduction

Unbalance in a rotating body produces an

undesirable centrifugal force. The force makes the

shaft bend elastically and imposes an excessive

force on the bearings which can deteriorate the

functions of the rotor and/or eventually decrease

the life of the machine. Balancing process on the

rotor, therefore. is a necessity for its safe and

normal operation. For a rigid rotor, where the

flexibility of rotor shaft is negligible, the centrifu­

gal force due to unbalance is directly transmitted

to the bearings. Thus the responses (forces or

displacements) at the bearings are measured in

rotor balancing(1S0 1925, 1981; Everett. 1987;
Darlow, 1987; 1989).

The general balancing procedure is composed

of attaching the trial mass, running the rotor,

measuring the corresponding response and calcu­

lating the unbalance. Since only the relative

changes of the response by trial mass attachment

are measured in the balancing work, there is no
severe difficulty in the measurement.

Unbalance in a rigid rotor can be divided into

• School of Mechanical and Industrial Engineering. Jeon­
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unbalanced masses on the two arbitrary planes

perpendicular to the rotating axis. On the other

hand, the bearing forces produced by the centrifu­

gal force due to the unbalance are determined by

the axial and circumferential positions of the

unbalance, its magnitude and the rotating speed

of rotor. Thus the (time-dependent) bearing

forces can be expressed on the two arbitrary

planes along the shaft axis.

Balancing without trial runs has been carried

out on hard bearing balancing machine makers

and by researchers. (Kwon et al., 1995) They

treated the rotor to be balanced as a dummy

system and used the relation between input and

output on the viewpoint of measurement.

In this study, the relations between rotor skew­

ness and bearing forces, between correction quan­

tities on the balancing planes and bearing forces.

and the extraction method of the parameters for

calculating the correction quantities through

measurements are rigorously derived. A simula­

tion example is used for proving the method.
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Fig. 1 General rigid rotor having offset of mass center and tilted principal axes.

2. Bearing Force Characteristics of a
General Rigid Rotor

2.2 Motion and moment equations
The force equilibrium equations in the Xl and

YI directions can be expressed as:

2.1 Model
A general rigid rotor model mounted on radial­

ly rigid bearings is considered, In Fig. I, X - Y
- 2 and Xl - Yt - 2 1 indicate the stationary and
rotating coordinates, respectively; the center of
mass is located at a distance of e from the axis of

rotation with an angle e, io is the constant
rotational speed, A xp A yp Bs, and By, are the

bearing forces at bearings A and B expressed
with respect to the rotating coordinates; 1.4 and Is

are the lengths from the center of mass to the

bearings A and B, respectively; and x - y- z and
x' - y' - z' having the origins at the center of

mass, are rotating coordinates parallel to Xl - Ii
- 2 1 and principal axes of the rotor, respectively,

The Euler equation of three dimensional rigid

-body motion is

~MA=(H,4)X'YIZ,+QxHA (3)

where (HA) X, y,Z, is the time rate of change of
angular momentum (H A measured with respect to

the X I - YI 21 reference). Since this model
rotates at a constant speed Q Z1= (;) (QxJ=Qy,=

oand Qx,=Qy,=Qz,=O), the Eq, (3) yields two
equations:

(4)
(5)

( !O)

(II)

Al=Ax, + jAy,
B1=B.y,+jBy,

~i11x, =1y,Z,W2

2::i11y, = - lx,z, w2

2.3 Bearing forces
By introducing the bearing reaction and gravi­

tational forces and the moments due to the forces

into Eqs. (I) to (5). the following equations are

obtained:

Ax, + Bs, - mg cos tat = - meoi' cos e (6)
A y , + By, + mg sin tot = - 11'1£(;)2 sin e (7)

- (lA + Is) By, -1.4mg sin tot= I Y,Z,w2 (8)
(fA + Is) Bx,-IAmg cos tot = - Ix ,z,w2 (9)

Using complex variables

(1)

(2)
2::Fx, = - mea/co» e
2::Fy,=-mc:a?sin o
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Fig. 2 Balancing rotor model.

Eqs. (6) to (9) yield two equations:

Ai + B,=mge-j W
' - meor e" (12)

(fA+ Is) B 1=mglAe-j/nt - (IX,ZI +jI"zl) (j} (13)

Equation (13) is replaced by

(lA +Is) B 1= mglie'?" - mIA(i/ce j8
- (Ix, +jI>,,) w2 (14)

since the parallel-axis theorem yields

IXlz,=lxi:+ mice cos 8

[Ylll=[Yi:+ mise sin 8

Solving for A I and B I from Eqs. (12) and (14),
we have

-A 1 (' I -JWI I 2 j8t 2([ t'[) (15)'=/Atl
s

mgse <miaree IJJ xz lYl

-B 1 (' I -)wt I 2 j8 2(J"J) (16)
1= I., t Is mg Ae - m AW ee - W Xi: T J y'

The bearing reaction forces expressed on the

rotating coordinates have time-dependent terms

due to the gravity and time-independent terms

due to the rotor skewness composed of c. 8, Ix;:
and IYi:' The forces AI and B I in Eqs. (15) and
(16) are actually the reaction from the bearing.

The bearing forces Al and B I due to the rotor

skewness used in the following part of this paper

have the opposite direction to that of AI and B I

in Eqs. (15) and (16),

3. Relation between Bearing Force
Measurements and Balancing

Plane Quantities

3.1 Modelling
Balancing is a process whereby the offset of the

mass center is eliminated and a tilted principal

axis of rotation is aligned, f n the case of this rigid

rotor-bearing system. the offset of mass center

and the tilting of the principal axis can be trans­

formed into a dynamically equivalent system by

lumping the mass into two planes perpendicular

to the rotating axis. Therefore. when we convert

the offset and skewness of the rotor by the lumped

masses on two planes and apply the correspond­

ing counter weights on the planes, the unbalance

can be eliminated dynamically. This indicates two

-plane balancing of a rigid rotor.

Figure 2 shows two lumped masses mi. Jn2 on

the planes I and 2, where CI' C2 and 81• 82 indicate
the eccentricities and orientations of the masses.

respectively, The planes I and 2 are located at the

distances of 11 and 12 inside from the bearings A
and B. respectively.

3.2 Equations of motion
For the lumped-mass system of Fig, 2, the

equations of force equilibrium on the rotating

coordinates are expressed as follows:
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the Eqs. (21) and (22) become

]5 +P - - 1 (A ' B }..L 11t1 +mz -iwt (25)
1 z- (;J I T I' u/ ge

IIPI+(l-lz)]5z== -~El +mill+m~(t -/z) ge?" (26)
(jJ IJ)

Solving for PI and Ps- we have

p BIlz-AI (1-12) + m, -jwt (27)
I (l-lj-/Z)(J} (j}ge

P AIII-Bl (1-11) + 111.2 «itut (28)
2 (I-!I-IZ)(J} -;;;:ge

Since each bearing force on the rotating coordi-

Ax, +Bx,- (1111+ 111,) g cos tat +11l1CIW
2 cos 81

+mlewi cos &=0 (17)

A y,+ By!+ (ml+mZ)g sin wftmlclwl sin 81

+mlczw2sin &= O (]S)

The moment equilibrium equations on the

rotating coordinates with respect to the bearing

position A are written as:

-1111lJcIW
2 sin 81- (I-I,) m'Clwl sin fh.-/,By,

-llnllg sin tu! - (I-Il ) mig sin wI=0 ( (9)

IllnlciWZ cos 81+(1-ll \ mlClw
l cos fh. + IIBx,

-/1nlIg cos tat> (/-ll ) m,g cos wt=O (20)

3.3 Derivation of correction quantities in
terms of bearing forces

As can be seen in Eqs. (17) to (20), the

quantities fit" me. 1nlclo 1n2C,. 81 and fh are so
entangled that it is extremely complicated to solve

them explicitly as functions of the bearing forces

Ax!, Ayl' Bx! and Be.. However, the equations
can be simplified by introducing the complex

numbers. By summing Eq. (17) and Eq. (18)

multiplied by the imaginary number j. the follow­

ing equation is obtained:

(Ax, t jAy) + (Bx,+jBy) - i m,+mz) ge?"

+mlClw'ei 8
, +m,c2w'ei8' =O (21)

Similarly, Eqs, (19) and (20) are unified as

follows:

ltmlclw'ei81+(1- I,) m,c,w'ei 8
, + I (Bx,+jBy)

- !Itnlge-iwt - ({ -/2) m-ge?" =0 (22)

By using the complex forces of Eqs (10) and

(II) and introducing the correction quantities in

terms of complex variables, as below:

/{l2Exo- ({- lz) Axor+{!2Byo- (I Iz)AyoF
({ - /1 -I,) ai

PI = mlClej 8
!

l2Bxo- (/-l,) Axo+j{l2Bl'O- (I - h) AyoJ (33)
({ - II- (2) w2

P2=m2C2ei8
,

IIAxo- (I -II) Bto +i{l,A yo- (I-II) E ro) (34)
(1-/1- lz) WZ

Thus, the correction quantities mlCIo mse«. 81 and
8, are obtained from Eqs. (33) and (34), as

below:

(35)

Al =Ax! + jAy!
=Axo-' A xc cos( OJ[+ rPAX)

+ j{."ho+ A yc cos (wt + rP,] y)} (29)

B1=Bx,+jBy,
=Bxo+Bxc cOs(wl+rpBx)

+ j{Bl'O+ Bvc cos (OJ[ + rPB1')} (30)

where A x (), Ayo, Bss and Bv« indicate the con­

stant terms, and A xc. A vc- B xc and Byc and rp,1)(,

rp..jf", rPBX and rPBl" indicate the magnitudes and the
phases, respectively. of the time-dependent

sinusoidal terms.

By introducing Eqs, (29) and (30) into Eqs.

(27) and (28). we have

PI ({ 11 I) TWBxo+jByo+!B(WnJ
- 1- 2 W

- ({ -12){Axo+ jA yo+fA (wt)}

+mIiI-/I-/zl ge- jW
' ] (3!)

p z (1- II~ I,) cl [ldAxo+jA yo+14 (wt)}

- (1- II) {Bxo+ jByo+fB(Wt)}

+nl2({ -/1-!2) ge-i"" ] (32)

where f,] and I» stand for the time-dependent

terms, which are related to the time-varying

forces due to the gravity. Since the left-hand side

of Eqs. (31) and (32) are independent of time. all

the time-dependent terms in the right-hand side

of Eqs. (31) and (32) must vanish, Therefore, PI
and P I in Eqs. (31) and (32) can be rewritten as

follows:

nates includes time-independent, constant and

time-dependent terms synchronous to the rotating

speed as illustrated in Eqs. (15) and (16), the

bearing forces can be expressed in general as

follows:

(23)

(24)
PI=mlClei Q

,

P, = m,cze j Q
,
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4.2 Calculation of Axo, An}> Bxo and s-;
from measurements

In the experiments, only one axis between the

X and y axes at each bearing can be chosen for

measurement since the same information is

produced from both the X and Y axes measure­

ments, as illustrated in Figs. 3 and 4.

At bearing A, by letting the measured ampli­

tude be C4mPA'meas) and the measured phase of

Fig. 3 be (tPA,meas). which is governed by the

reference (or trigger) position on the periphery of

(37)

(38 )

4.1 Forces in the stationary frame
Equations (35) to (38) outlined in the previ­

ous section indicate that the correction quantities

mZC2, 81 and fh are expressed in terms of the

bearing forces A x o, A yo, B x o and B 1,0. Although

these forces can be found experimentally, the

method of measurement is not straightforward in

the sense that they are not isolated quantities but

are amalgamated with certain components. A

brief description of the method of extraction is

illustrated below.

Transforming the force vector A 1 into the

stationary coordinates yields

A = iltej w t = (Ax, + jAy,) e j w t

By replacing the time-independent terms in Eq,

(15) by A x o+ jA yo of Eq. (29), and then sub­

stituting the results into the above equation, we

have

4. Measurement Outline and
Simulation

8
1
=tan-llzByo- (1-12) A yo (36)

12Bxo- (f -12) A x o

~- (f -II) Bxo)2 + (I1A yo- (l- !1) B)'o)2
mie« (! -/1- / , ) w2

Fig. 3 X and Y components of force on bearing A,

Mg£A
e..+ £B

Phase (or ~me)

, '-­
I

Fig. 4 X and Y components of force on bearing B.

°

x

y

(43)

- mgl« .
A=-I+1 +Axocos wt-A)'osm tat

..I B

+j (A yo cos tot+ A x n sin tot) (39)

Similarly, we have:

B = (Bx, + jB y , ) e':"
mgl« .

=-1-'-/-+ Bxo cos w! - Br« Sin tot
AT B

+j(Byocos w!+Bxosin wt) (40)

By rearranging Eqs. (39) and (40). we have

A - mglB + /A 2+ 4 2"j(WIT~A) (41)
- fA + I

B
'I xo • YO"

B=mgIA+../B 2+B,2ej { W h <{> s ) (42)
fA + IB XO 10

where
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4.3 Simulation

An example model of Fig. 5 is considered to

show the validity of the method. The model is

composed of three elements: the first element of 15
ern length and 5 cm diameter, the second element

of 10em length and 10cm diameter and the third

element of 10 cm length and 5 em diameter. The

density of rotor material is 7. 8. The constant

rotational speed is (;J= lOOOrad/s. The second

element is IOO;.an offset from the rotation axis,

and the angle 8 in Fig. I which indicates the

unbalance direction is assumed to be zero for

simplicity. The two balancing planes are

positioned at Z= 15 em and 25 em respectively.

The coordinates of the mass center G of the

entire rotor system are ( 6.15385 X 10-3• 0,

18.6538) in cm unit. Using the parallel-axis theo­

rem and noting that the product of inertia of each

rod is zero. with respect to eentroidal axes. we
have:

I.n.=O.082469kg • ern"
Iyz=O

with respect to G. Calculating the bearing reac­

tion forces using Eqs. (15) and (16) and transfer-

Equations (45) to (48) present the coveted terms

A x o• A yo• Bx« and B YO in terms of the measured

quantities (A.mPA.meas), (AmpB.meas) , (<PA.meas)

and (<Ps.meas)' Therefore. substituting the results
(45) to (48) into Eqs, (35) to (38) yields the

correction quantities and their locations: namely.

mse« trl,C2' 81 and 82,

(47)

\'j-__zs: Z

Ah+ A1-0 = (AmPA,meas)2

"A4 YO
=tan(<PA,meaS)

xo

Fig. 5 Simulation model.

y

rotor, it is possible to obtain the following rela­

tions:

x

Consequently, A xo and A yo are derived as

(Amp•.",ecs) f 0 ( ) /' ;r
I or s ¢;A.",eas ""T'

vi +tan 2 (f ...."'eas)

8xo=

x

o triggE'r o -trigger

AMp•. Meos
- 45.563< Nh;---;f--+-"t--'---}'--- OJ t

(a) Bearing A (b) Bearing B

Fig. 6 Bearing forces on the vertical (X-) axis.
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ming them into the stationary coordinates, the

forces applied to the bearings on the vertical axes

(X-axes) can be plotted as in Fig. 6. In the

figure, AmPAmeas is 262.547 (N) and ArnPB,meas is
350.062 (N) .

In this simulation the trigger(reference) signal

is tuned to coincide with the unbalance direction

for simplicity. Since the trigger position coincides

with the peak level in forces, we have

¢A,meas=O

¢B,meas=O

Using Eqs. (45) to (48), we have

A x o=262.547 (N)

Ayo=O

Bxo=350.062(N)

Byo=O

Introducing these values into Eqs. (35) to (38)

yields the correction quantities as follows:

mse, = 3.06305 X 1O-4kg • m

81=tan-
I
( (0.1) (350.062) ~ (0.25) (262.547) )

= 180·

m2C2=3.06305 X JO-4kg • m

8.1= tan-
I
( (0.15) (262.547) ~ (0.2) (350.062)

=1800

The simulation results are acceptable within

common engineering practice. The total correc­

tion quantity 6.12610 X JO-4kg . m is balanced

with the unbalance on the second element. Two

correction quantities on the balancing planes at Z

= 15cm and 25cm eliminate the dynamic unbal­

ance also.

5. Conclusion

In this study, the correction masses on the two

arbitrary planes along a rigid-rotor shaft are

derived from the basic concept of three-dimen­

sional rigid body dynamics. The correction quan­

tities on two arbitrary balancing planes are ana-

Iytically found in terms of the bearing force

measurements.

In measurements. this method uses one measur­

ing point (or sensor) at each bearing. If suitable

equipments for driving the rotor and sensing the

bearing forces are supported technically, this

study provides simple, time-saving and useful

tool, because the method requires only the bear­

ing force measurements from a single run and

simple information: the distance between two

bearings and the positions of balancing planes

from the bearings. Using a simulation example,

the correction quantities calculated from the

measurement are shown to compensate the unbal­

ance due to rotor skewness.
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